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A Decade of Discovery Past

! Electroweak theory → law of nature [Z, e+e−, p̄p, νN , (g − 2)µ, . . . ]

! Higgs-boson influence observed in the vacuum [EW experiments]

! Neutrino flavor oscillations: νµ → ντ , νe → νµ/ντ [ν", νatm]

! Understanding QCD [heavy flavor, Z0, p̄p, νN , ep, lattice]

! Discovery of top quark [p̄p]

! Direct CP violation in K → ππ decay [fixed-target]

! B-meson decays violate CP [e+e− → BB̄]

! Flat universe dominated by dark matter & energy [SN Ia, CMB, LSS]

! Detection of ντ interactions [fixed-target]

! Quarks & leptons structureless at TeV scale [mainly colliders]
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Our Picture of Matter (the revolution just past)

Pointlike (r ≤ 10−18 m) quarks and leptons

Interactions: SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge symmetries
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The World’s Most Powerful Microscopes
nanonanophysics

Fermilab’s Tevatron Collider & Detectors

900-GeV protons: c− 586 km/h
980-GeV protons: c− 495 km/h

Improvement: 91 km/h!

Protons, antiprotons pass my window 45 000 times / second

. . . working toward 20 × increase in luminosity
⇒ 107 collisions / second

CERN’s Large Hadron Collider, 7-TeV protons: c− 10 km/h

achieved
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CDF dijet event (
√

s = 1.96 TeV): ET = 1.364 TeV qq̄ → jet + jet

The World’s Most Powerful Microscopes
nanonanophysics
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The World’s Most Powerful Microscopes
nanonanophysics
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Gauge symmetry (group-theory structure) tested in

e+e− → W+W−
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Gauge symmetry (group-theory structure) tested in

e+e− → W+W−
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Gauge symmetry (group-theory structure) tested in

e+e− → W+W−
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The Importance of the 1-TeV Scale

EW theory does not predict Higgs-boson mass
Thought experiment: conditional upper bound

W+
L W−

L , Z0
LZ0

L,HH,HZ0
L satisfy s-wave unitarity,

provided MH ≤
(
8π
√

2/3GF

)1/2
= 1 TeV

•  If bound is respected, perturbation theory is 
everywhere reliable

•  If not, weak interactions among W±, Z, H become 
strong on 1-TeV scale

New phenomena are to be found around 1 TeV
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Precision Measurements Test the Theory …
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… and determine unknown parameters

LEP 2494.6 ± 2.7 MeV
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… and determine unknown parameters

M
W

   !GeV"
M

H
  
 !

G
e
V
"

Mass of the W Boson (preliminary)

Mt = 171.4#2.1 GeV

linearly added to

  0.02758#0.00035

!"
(5)

!"had=

Experiment M
W

   !GeV"

ALEPH 80.440 # 0.051

DELPHI 80.336 # 0.067

L3 80.270 # 0.055

OPAL 80.416 # 0.053

#
2
 / dof  =  49 / 41

LEP 80.376 # 0.033

10

10
2

10
3

80.2 80.4 80.6

!

"!

#!

$%!

$&!

%!!

%"!

$''! $''( %!!! %!!( %!$!

)
*
+
,-
.
/
/
,0
1
2
3
4

52.6

18



Revolution:

Understanding the Everyday

! Why are there atoms?
! Why chemistry?
! Why stable structures?
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Symmetry of laws !⇒ symmetry of outcomes
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The agent of electroweak symmetry breaking 
represents a novel fundamental interaction 
at an energy of a few hundred GeV …

We do not know the nature of the new force.
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What is the nature of the mysterious new 
force that hides electroweak symmetry?

✴A force of a new character, based on 
interactions of an elementary scalar

✴A new gauge force, perhaps acting on 
undiscovered constituents

✴A residual force that emerges from strong 
dynamics among electroweak gauge bosons

✴An echo of extra spacetime dimensions

Which path has Nature taken?
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✴ Is it there? How many?

✴ Verify quantum numbers (spin, parity, …)

✴ Does H generate mass for gauge bosons 
and for fermions?

✴ How does H interact with itself?

Essential step toward understanding the new force 
that shapes our world:
Find the Higgs boson and explore its properties.

Finding the Higgs boson starts a new adventure!
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Imagine a world without a Higgs mechanism
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If electroweak symmetry were not hidden …

•Massless quarks and leptons
•QCD confines quarks into color-singlet hadrons
•Nucleon mass little changed
•QCD breaks EW symmetry, gives tiny W, Z masses;
weak-isospin force doesn’t confine

•p might outweigh n: rapid β-decay 
⇒ lightest nucleus is n … no hydrogen atom

•If light elements from BBN, ∞ Bohr radius

•No atoms means no chemistry, no stable composite 
structures like liquids, solids, …

… character of the physical world
would be profoundly changed [arXiv:0901.3958]
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What the LHC is not really for …
1. Find the Higgs boson,
the Holy Grail of particle physics,
the source of all mass in the Universe.

2. Celebrate.

3. Then particle physics will be over.

We are not ticking off items on a shopping list …

We are exploring a vast new terrain
… and reaching the Fermi scale
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Revolution:

The Meaning of Identity

Varieties of matter

! What sets masses and mixings of quarks and leptons?

! What is CP violation trying to tell us?

! Neutrino oscillations give us another take, might hold a
key to the matter excess in the Universe.

All fermion masses and mixings mean new physics

! Will new kinds of matter help us to see the pattern?

What makes a top quark a top quark,
an electron an electron, a neutrino a neutrino?
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Flavor physics may be 
where we see, or diagnose, 

the break in the SM.

Parameters of the Standard Model

3 coupling parameters αs,αem, sin2 θW

2 parameters of the Higgs potential
1 vacuum phase (QCD)
6 quark masses
3 quark mixing angles
1 CP-violating phase
3 charged-lepton masses
3 neutrino masses
3 leptonic mixing angles
1 leptonic CP-violating phase (+ Majorana . . . )

26+ arbitrary parameters
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Veltman: Higgs boson knows something we don’t know!
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Neutrino family patterns (an example)
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Neutrino Masses
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New Physics on the Fermi ScaleMore
?

If dark matter interacts weakly …

… its likely mass is 0.1 to 1 TeV: Fermi scale

COSMOS
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Many extensions to EW theory
entail dark matter candidates

✴Predicts that Higgs field condenses, 
breaking EW symmetry, if top is heavy

✴Predicts a light Higgs mass
✴Predicts cosmological cold dark matter
✴In a unified theory, explains the values of 

standard-model coupling constants

Supersymmetry is highly developed, has several 
important consequences:
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Revolution:

The Unity of Quarks & Leptons

! What do quarks and leptons have in common?

! Why are atoms so remarkably neutral?

! Which quarks go with which leptons?

! Quark-lepton extended family " proton decay:
SUSY estimates of proton lifetime ∼ 5× 1034 y

! Unified theories " coupling constant unification

! Rational fermion mass pattern at high energy?
(Masses run, too)
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Natural to neglect gravity in particle physics

Mass of the vacuum

But gravity is not always negligible …

Higgs field contributes uniform vacuum energy density

!H ≡ M2
Hv2

8
≥ 108 GeV4 ≈ 1024 g cm−3

Critical density !c ≡
3H2

0

8πGNewton
! 10−29 g cm−3

Gravitational ep interaction ≈ 10–41 EM
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How to separate EW, higher scales?

Does MH < 1 TeV make sense?
The peril of quantum corrections – hierarchy problem

Str
ings?

1018

Planck s
cale

Quantum gravity
?

[A PUZZLE RAISED BY THE HIGGS]
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How to separate EW, higher scales?

Traditional: change electroweak theory to understand
why MH, electroweak scale ≪ MPlanck

To resolve hierarchy problem: extend standard model
on the 1-TeV scale …

SU(3)c ⊗ SU(2)L ⊗ U(1)Y 

composite Higgs boson

technicolor / topcolor

supersymmetry

…

Ask instead why gravity is so weak,
why MPlanck ≫ electroweak scale
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Revolution:

A New Conception of Spacetime

! Could there be more space dimensions
than we have perceived?
! What is their size? Their shape?
! How do they influence the world?
! How can we map them?

string theory needs 9 or 10
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V (r) = −
∫

dr1

∫
dr2

GNewtonρ(r1)ρ(r2)
r12

[1 + εG exp(−r12/λG)]

Gravity follows Newtonian force law down to ≲ 1 mm

εG
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Connections …

Scientific American, 2.2008

54


